Find a power series representation for the function and determine the interval of convergence.

1) $f(x)=\frac{1}{1+x}$

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{n}, \quad I=(-1,1)
$$

2) $f(x)=\frac{3}{1-x^{4}}$ $\sum_{n=0}^{\infty} 3 x^{4 n}, \quad I=(-1,1)$
3) $f(x)=\frac{1}{1+9 x^{2}}$

$$
\sum_{n=0}^{\infty}(-1)^{n} 3^{2 n} x^{2 n}, \quad I=\left(-\frac{1}{3}, \frac{1}{3}\right)
$$

4) $f(x)=\frac{1}{x-5}$

$$
-\sum_{n=0}^{\infty} \frac{1}{5^{n+1}} x^{n}, \quad I=(-5,5)
$$

5) $f(x)=\frac{x}{4 x+1}$
$\sum_{n=0}^{\infty}(-1)^{n} 2^{2 n} x^{n+1}, \quad I=\left(-\frac{1}{4}, \frac{1}{4}\right)$
6) $f(x)=\frac{x}{9+x^{2}}$

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{9^{n+1}}, \quad I=(-3,3)
$$

Express the function as the sum of a power series by first using partial fractions. Find the interval of convergence.
7) $f(x)=\frac{3}{x^{2}+x-2}$

$$
\sum_{n=0}^{\infty}\left[\frac{(-1)^{n+1}}{2^{n+1}}-1\right] x^{n}, \quad I=(-1,1)
$$

8) For the function: $f(x)=\frac{1}{(1+x)^{2}}$
a) Use differentiation to find a power series representation for the function and find the radius of convergence.
b) Use part a) to find a power series for: $f(x)=\frac{1}{(1+x)^{3}}$
c) Use part b) to find a power series for: $f(x)=\frac{x^{2}}{(1+x)^{3}}$

> a) $\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}, \quad R=1$
> b) $\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}(n+2)(n+1) x^{n}, \quad R=1$
> c) $\frac{1}{2} \sum_{n=2}^{\infty}(-1)^{n} n(n-1) x^{n}, \quad R=1$

Find a power series representation for the function and determine the radius of convergence.
9) $f(x)=\ln (5-x)$

$$
\ln 5-\sum_{n=1}^{\infty} \frac{x^{n}}{n 5^{n}}, \quad R=5
$$

10) $f(x)=\frac{x^{2}}{(1-2 x)^{2}}$ $\sum_{n=2}^{\infty} 2^{n-2}(n-1) x^{n}, \quad R=\frac{1}{2}$
11) $f(x)=\arctan (x / 3)$

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{3^{2 n+1}(2 n+1)} x^{2 n+1}, \quad R=3
$$

Evaluate the indefinite integral as a power series. What is the radius of convergence?
12) $\int \frac{t}{1-t^{8}} d t$

$$
C+\sum_{n=0}^{\infty} \frac{t^{8 n+2}}{8 n+2}, \quad R=1
$$

13) $\int \frac{x-\tan ^{-1} x}{x^{3}} d x \quad C+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{2 n-1}}{4 n^{2}-1}, \quad R=1$
14) Show that the function $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ is a solution of the differential equation $f^{\prime \prime}(x)+f(x)=0$.
Show
15) Let $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ find the intervals of convergence for f, f^{\prime}, and $f^{\prime \prime}$

$$
\begin{array}{|lc|}
\hline f & I=[-1,1] \\
f^{\prime} & I=[-1,1) \\
f^{\prime \prime} & I=(-1,1) \\
\hline
\end{array}
$$

16) Given the geometric series $\sum_{n=0}^{\infty} x^{n}$ find the following:
a) The sum of the series:

$$
\begin{array}{ll}
\sum_{n=1}^{\infty} n x^{n-1} & |x|<1 \\
\frac{1}{(1-x)^{2}}, & |x|<1 \\
\hline
\end{array}
$$

b) The sum of each of the following series:

$$
\begin{array}{lc}
\sum_{n=1}^{\infty} n x^{n} \quad|x|<1 & \sum_{n=1}^{\infty} \frac{n}{2^{n}} \\
\frac{x}{(1-x)^{2}},|x|<1 & 2
\end{array}
$$

c) The sum of each of the following series

$$
\begin{array}{ccc}
\sum_{n=2}^{\infty} n(n-1) x^{n} \quad|x|<1 & \sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}} & \sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}} \\
\frac{2 x^{2}}{(1-x)^{3}},|x|<1 & 4 & 6
\end{array}
$$

17) Use the power series for $\tan ^{-1} x$ to prove the following expression for π as the sum of an infinite series:

$$
\pi=2 \sqrt{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}
$$

Show

